
Animate with a spritesheet in the material editor.

I developed this animation system when prototyping for a personal project. I used simple 2d animations with two to four frames each and
played them onto a 3D object that also had its own animations. Note: This material may only work well if the sprite sheet has an even total
number of frames, such as 2,4,6,8 and so on. This material is also only made for looping animations in this tutorial and wont stop playing.

Add the sprite sheet to a Texture Sample, it maybe a good idea to convert this
to a Texture2D parameter as we build this material to be used with instances
and may want to use different sprite sheets when we are done.

Add one Panner and set it to pan 1 in X and 0 in Y.
Attach it to the texture uv.

Add a Texture Coordinate.
The texture is going to pan in X like crazy now.

Add a Constant, connect it to the Pannar Time.

Now it´s possible to set the Texture Coordinate to fit the frame row.
Center the first frame by adding a value to the constant. Add more constants and setup their values to fit each frame of the animation.

Take the constants that represent frame one and two and connect them to a Linear Interpolation(Lerp).
Frame 1 into A and Frame 2 into B. For the Alpha, make a temporary Constant and plug it in for now.

Connect this linear interplation to the Panner´s Time.

Next Page:
Making the animation play.
 This tutorial will only show how to make this work with a four frame long animation. Should be possible to extend this to play longer animations as well.

Animation system
We would like to switch between the frame numbers over
time. Its possible to switch between black(0) and white(1)
with a Linear Interpolation but we wouldnt like to blend
from black to white with all grey middle values. Thats why
an IF is necessary to only make our output black or white.

Add Time, Multiply and a Scalar parameter.
Connect Time into Multiply A and the Parameter into B.
This will let us control the animation speed.

Add IF, Sine and two Constants to switch between 0 and 1.
Connect the animation speed into the Sine, making it go from black to white over time. (Sine value = 1) Connect the Sine into IF A and
set the IF to only output 1 or 0 from it, like this: B is 0, IF A is equal or less then B output 0, IF A is greater then B output 1.

Connect this “animation system” to the Linear Interpolation´s alpha.
These two frames are now going to loop and its possible to set the
animation speed.

We would probably like to have more then two
frames in the animation though. Maybe it also
would be nice being able to offset all our
frame positions with a scalar parameter.

Add one Add node for each frame and one
Scalar parameter. Connect frame to add A and add
to Linear Interpolation. Connect the Scalar
Parameter to all of the add nodes in B. We can now offset all frames with one value.

Reconnect all frames to the Linear Interpolation. Make a new Linear Interpolation(Lerp) for frame 3 and 4.
Connect the “animation system” to these two linear interpolations Alpha.

If we like more then two frames to loop, we would need to loop the
Linear Interpolation nodes at half speed. Let´s set up a new part
to the “animation system” that will let us have four frames.
.

Duplicate the IF, Sine and two constants.
Set Sine value 2 and connect the “animation speed” to it.

Add another Linear Interpolation(Lerp).
Connect the other two linear interpolations into A and B.
Connect the new part of the “animation system” into the alpha,
making it play frame 1 & 2 and then frame 3 & 4.

Next page: Change height position to play a different animation.

Switch to another row in order to play another animation from the same sheet.
Instead of making the position change in X (Horizontal) like we did with
the animation frames make them change in Y (vertical) instead. First we need
a new Panner to control the height position separate from X and then use
switch parameters to change between the rows using instance materials or
through unrealscipt.

Add a new Panner, set its Y to 1 and X to 0.
Add a new Add and connect our old and new Panner to it.
Connect this to our Texture´s uv.
It will also pan like crazy in Y until we add a new Constant to it.

Our Texture Coordinate will be doubled, we have to reduce it to half the size in U and V to be the same as before,
now when we're using a second Panner.

Switch between height positions is almost the
same as with our frames, we have the row
(frame) position and make one row position
for each animation in the sheet.

Add a Constant for each row of animation
there is in your animation sheet. (I got three
rows with different animations).

Add one Add node for each row as well and
a new Scalar Parameter like we did for our
frames. This can be used to offset the height.

We can change rows using Switch Parameters.
Add two Switch Parameters.
Add one Linear Interpolation(Lerp) and two Constants.

Connect two of the row positions to the Linear Interpolation.
Connect a Switch parameter to the Linear Interpolation alpha.
Connect both constants to the Switch True and False input.
Set one constant to 1 and the other to 0.

Now we can switch between two height positions.

Connect the Linear Interpolation into the second switch's False input and add the third height position to its True input.
Connect this row position system to our second Pannar Time. Now its possible to change positions in Y and play new animations that is
located on the same animation sheet.

On the next and last page, let's flip the animation horizontally.

We have our animation setup with four frames
We can also change rows to choose another animation
within the same spritesheet. It´s also possible to change
the material with custom parameters to our instances or through code.

One last thing, we can flip our animation
using a OneMinus.

Add one Switch
Add Two Linear Interpolations(Lerp)
Add two new Texture Coordinates.
Add two Constants.
Add one OneMinus

We have to make two Texture Coordinates
when one of them is for the reversed
direction. Texture Coordinate used for
reversed direction may have a value in U
that is three time the size of the normal
direction nodes value. It will also have a
negative version of the normal nodes value
in V. This will flip the image at its center, if
not, tweak it until its fit later when this
function is done.

Connect the normal (Forward) Texture
Coordinate to a Linear Interpolation in A.
Connect the reversed Texture Coordinate into B and the Switch to it´s Alpha.
Connect both Constants to the Switch True and False, set the constant that goes into True to 1.

Connect the Horizontal Panner (The one that drive our frames) into OneMinus and the Linear Interpolation to its Coordinates.
Connect the OneMinus to the remaining Linear Interpolation in B and the Horizontal Panner in A.
Connect Switch to Linear Interpolation Alpha.
Connect Linear Interpolation to the Add A that's connected to the Texture Parameter.

And we're done!

// Written by Anders Edlund | http://www.andersedlund.com

